Beiträge zur Chemie organometallischer metallacyclischer Nebengruppenmetallverbindungen

IX. * Eine ungewöhnliche Koordinationsgeometrie des Platin(II) in dem homoleptischen Metallacyclopentankomplex $[Li(PMDETA)]_2Pt-(CH_2CH_2CH_2CH_2)_2$

Hans-Otto Fröhlich und Ralf Wyrwa

Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena, August-Bebel-Str. 2, 07743 Jena (Deutschland)

Helmar Görls **

Max-Planck-Gesellschaft, Arbeitsgruppe "CO2-Chemie" an der Universität Jena, Lessingstraße 12, 07743 Jena (Deutschland)

Ursula Pieper **

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Deutschland) (Eingegangen den 23. September 1993)

Abstract

Reaction of $[Li_2(Et_2O)]Pt-(CH_2CH_2CH_2)_2$ (1) with N,N,N',N''-pentamethyldiethylenetriamine (PMDETA) in diethylether (Et_2O) gives $[Li(PMDETA)]_2Pt-(CH_2CH_2CH_2CH_2)_2$ (2). The complex has been characterized by DTA analysis, ¹H and ^{13}C NMR spectroscopy and X-ray crystallography. The thermal properties and the structures of 2 and $[Li(TMEDA)]_2Pt-(CH_2CH_2CH_2CH_2)_2$ (3) indicate the significant difference of the influence of PMDETA and N,N,N',N''-tetramethylethylenetiamine (TMEDA) on the platinacyclopentane system.

Zusammenfassung

Die Umsetzung von $[Li_2(Et_2O)]Pt-(CH_2CH_2CH_2CH_2)_2$ (1) mit N,N,N',N'',N''-Pentamethyldiethylentriamin (PMDETA) in Diethylether ergibt $[Li(PMDETA)]_2Pt-(CH_2CH_2CH_2CH_2)_2$ (2). Der Komplex wurde charakterisiert durch DTA, ¹H- und ¹³C-NMR-Spektroskopie und Röntgenstrukturanalyse. Die thermischen Eigenschaften und die Strukturen von 2 und $[Li(TMEDA)]_2Pt-(CH_2CH_2CH_2)_2$ (3) weisen auf den signifikanten Unterschied des Einflusses von PMDETA und N,N,N',N'-Tetramethylethylendiamin (TMEDA) auf das Platinacyclopentansystem hin.

Key words: Lithium; Platinum

1. Einleitung

Kürzlich publizierten wir die Synthesen und Ergebnisse NMR-spektroskopischer und differentialthermoanalytischer Untersuchungen homoleptischer metallacyclischer Verbindungen des Nickels, Palladiums und <u>Platins</u> des allgemeinen Typs $[Li(Solv)_x]_2M-(CH_2-CH_2CH_2)_2$ (Solv = Et_2O , Tetrahydrofuran (THF), TMEDA, PMDETA) sowie Resultate der Röntgenstrukturanalysen von einigen Komplexen obigen Typs mit Solv = THF, M = Ni, Pd und Solv = TMEDA, M = Pt [1-3].

Correspondence to: Prof. H.-O. Fröhlich.

^{*} VIII. Mitteilung, vgl. Lit. [1].

^{**} Kristallstrukturanalyse.

Inzwischen gelang es uns, weitere homoleptische <u>Platinacyclopentankomplexe</u>, z.B. [Li(PMDETA)]₂Pt-($CH_2CH_2CH_2CH_2$)₂, in guter Ausbeute darzustellen und zu charakterisieren.

In dieser Mitteilung soll über den Einfluß des am Lithium koordinierten PMDETA auf die thermische Stabilität, die Lage der ¹H- und ¹³C-NMR-Signale und die Molekülstruktur, die von der gewohnten quadratisch planaren Geometrie der Platin(II)-Komplexverbindungen stark abweicht, berichtet werden.

2. Ergebnisse und Diskussion

Das wie in [3] beschrieben dargestellte $[Li_2(Et_2O)]$ -Pt-(CH₂CH₂CH₂CH₂)₂ (1) wurde in Ether suspendiert. Fügt man zu dieser Suspension PMDETA im Überschuß hinzu, so entsteht gemäß

$$[Li_{2}(Et_{2}O)]Pt(CH_{2}CH_{2}CH_{2}CH_{2})_{2}+2PMDETA \xrightarrow{(Et_{2}O)}_{-20^{\circ}C\cdots RT}$$
(1)
$$[Li(PMDETA)]_{2}Pt(CH_{2}CH_{2}CH_{2}CH_{2})_{2}$$
(2)

in ca. 90% iger Ausbeute der farblose, luft- und hydrolyseempfindliche, kristalline Komplex 2.

Die diamagnetische Verbindung zersetzt sich, wie differentialthermoanalytische Untersuchungen ergaben, bereits bei einer Temperatur von 90°C. Dies ist eine im Vergleich zu [Li(TMEDA)]₂Pt-(CH₂CH₂-CH₂CH₂)₂ (3) mit $T_z = 249$ °C [3] unerwartet niedrige Zersetzungstemperatur.

Im Anschluß an die DTA-Messung wurde die Gasphase über den festen Zersetzungsrückständen der Substanz gaschromatographisch analysiert. Das Kohlenwasserstoffgemisch wies folgende Zusammensetzung auf (prozentualer Anteil in Klammern):

TABELLE 1. ¹H- und ¹³C-NMR-Daten von 2 (in C₆D₆)

Strukturelement	¹ H-NMR	¹³ C-NMR	
	δ (ppm)	δ (ppm)	
Pt-CH ₂	1.30(8H, t)	19.11	
$Pt-CH_2-CH_2$	2.22(8H, m)	38.28	
$\operatorname{CH}_3 - \widetilde{\operatorname{N}(CH_2)_2}^{a}$	1.90(16H, s)	54.14	
$(CH_{3})_{2}N(CH_{3})^{a}$		57.18	
x- 3/2 x- 2/ ·	1.90(16H, 2)		
$N-CH_3^{a}$	2.07(6H, s)	44.18	
$N(CH_3)_2$ a	2.16(24H, s)	45.97	

^a Für PMDETA in C_6D_6 wurden folgende ¹H- und ¹³C-NMR-Daten gefunden: ¹H-NMR: N(CH₃): 2.14, N(CH₃)₂: 2.08, (CH₃)N(CH₂)₂, (CH₃)₂N(CH₂): 2.23-2.48; ¹³C-NMR: N(CH₃): 43.17, N(CH₃)₂: 46.03, (CH₃)N(CH₂)₂: 56.92, (CH₃)₂N(CH₂): 58.37.

Ethan (2), Ethylen (4), n-Butan (74), But-1-en (6), (E/Z)-But-2-en (14). Vergleicht man dieses Ergebnis mit dem, das bei der thermischen Zersetzung von **3** erhalten wurde, so zeigt sich, daß der n-Butangehalt mit 74% erstaunlich hoch ist. Dieser Befund war ein Anzeichen dafür, daß sich TMEDA und PMDETA hinsichtlich ihres Einflusses auf wichtige Eigenschaften des Platinacyclopentansystems signifikant unterscheiden.

2.1. ¹H- und ¹³C-NMR-Untersuchungen von [Li(PMDE-TA)], $Pt-(CH_2CH_2CH_2CH_2)$, (2)

Die NMR-Spektren von 2, die in Abb. 1 wiedergegeben sind, wurden bei Raumtemperatur in Benzen- d_6 aufgenommen.

In Tabelle 1 sind die NMR-Daten von 2 zusammengestellt.

Das ¹H-NMR-Spektrum von 2 weist fünf Signale auf, da die ¹H-Signale der beiden Ethylenbrücken des

Abb. 1. ¹H- und ¹³C-NMR-Spektren von 2 (in C_6D_6).

PMDETA hier als "Singulett" erscheinen. Aufgrund der Kernspinkopplung zwischen ¹H und ¹⁹⁵Pt besitzen die Signale der Wasserstoffatome der α - und β -CH₂-Gruppen der metallacyclischen Ringe Satellitenpeaks. Die Kopplungskonstanten betragen ²J(¹H-¹⁹⁵Pt) = 36 Hz und ³J(¹H-¹⁹⁵Pt) = 53 Hz. Ähnliche Kopplungskonstanten findet man in den NMR-Spektren von 3 mit ²J(¹H-¹⁹⁵Pt) = 35.4 Hz, ³J(¹H-¹⁹⁵Pt) = 55 Hz [3] sowie im Spektrum von Li₂[Pt(CH₃)₄] mit ²J(¹H-¹⁹⁵Pt) = 43.5 Hz [4].

Das den α -C-Atomen zuzuordnende ¹³C-NMR-Signal von 2 wird ebenfalls von 2 Satellitenpeaks flankiert. Die Kopplungskonstante ¹J(¹³C-¹⁹⁵Pt) beträgt 485 Hz und ist damit kleiner als die entsprechende von 3 mit 498 Hz [3].

Ein Vergleich der chemischen Verschiebungen der NMR-Signale der ¹H- bzw. ¹³C-Atome der α -CH₂-Gruppen der metallacyclischen Ringe der Komplexe 2 und 3 ergibt, daß die entsprechenden Signale bei 2 geringfügig nach höherem Feld verschoben sind.

Durch Umkristallisation der Verbindung 2 in Tetrahydrofuran in Anwesenheit überschüssigen PMDETA konnten für die Röntgenstrukturanalyse geeignete Kristalle gewonnen werden.

2.2. Röntgenstrukturuntersuchung von $[Li(PMDETA)]_2$ -Pt- $(CH_2CH_2CH_2CH_2)_2$ (2)

Die Ergebnisse der Röntgenstrukturanalyse der Verbindung 2 zeigt Abb. 2. Die kristallographischen

quaderförmiger Kristall Summenformel C26H62Li2N6Pt $M_{\rm r} = 667.8 \text{ g mol}^{-1}$ Molekulargewicht Kristallsystem monoklin Raumgruppe C2 (No. 5) a = 18.235(5) Å Gitterparameter b = 9.031(1) Å c = 9.959(4) Å $\alpha = 90.0^{\circ}$ $\beta = 91.72(1)^{\circ}$ $\gamma = 90.0^{\circ}$ $V = 1639(1) \text{ Å}^3$ Elementarzellenvolumen Dichte (ber.) $D_{\rm c} = 1.35 \ {\rm g \ cm^{-3}}$ Formeleinheiten Z = 2Absorptionskoeffizient $\mu = 43.02 \text{ cm}^{-1} (\text{Mo}-\text{K}\alpha)$ 27.4° $\theta_{\rm max}$ Symmetrieunabhängige 4986 (aus 5956) Reflexe Beobachtete Reflexe mit 4974 $I > 2\sigma(I)$ Anzahl der verfeinerten 166 Parameter R 0.027 R_w 0.028 EOF 1.18 1.5 e Å⁻³ Restelektronendichte

farbloser,

Daten sind in Tabelle 2 zusammengestellt. Tabelle 3 enthält ausgewählte Bindungslängen und -winkel.

Das Molekül besitzt eine C2-Symmetrie. Die

Abb. 2. Molekülstruktur von [Li(PMDETA)]₂Pt-(CH₂CH₂CH₂CH₂)₂ [5].

TABELLE 2. Kristallographische Daten von 2

Kristallmorphologie

TIBLEED (). Hasgewante Bindangshangen (i i) and "winter () ten					
Pt−C4*	2.119(4)	Pt-C4	2.119(4)		
Pt-C1	2.121(4)	Pt-C1*	2.121(4)		
Pt-Li	2.628(7)	Pt−Li*	2.628(7)		
Li-N3	2.228(9)	Li–N1	2.288(10)		
Li–N2	2.371(9)	Li–C1	2.635(10)		
Li–C4*	2.748(9)	C1-C2	1.531(7)		
C2-C3	1.521(8)	C3–C4	1.536(6)		
C4−Li*	2.748(9)	N1-C5	1.432(10)		
N1-C6	1.444(9)	N1-C7	1.491(10)		
N2-C8	1.448(8)	N2-C9	1.461(8)		
N2-C10	1.52(2)	N3-C13	1.453(8)		
N3-C12	1.462(9)	N3-C11	1.470(7)		
C7–C8	1.514(13)	C10-C11	1.502(11)		
C4*-Pt-C4	165.7(3)	C4*-Pt-C1	89.8(2)		
C4-Pt-C1	83.0(2)	$C4^{+}-Pt-C1^{+}$	83.0(2)		
C4-Pt-C1*	89.8(2)	C1-Pt-C1*	119.3(3)		
C4*-Pt-Li	69.8(2)	C4-Pt-Li	117.7(2)		
C1-Pt-Li	66.4(2)	C1*-Pt-Li	152.5(2)		
C4*-Pt-Li*	117.7(2)	C4-Pt-Li*	69.8(2)		
C1-Pt-Li*	152.5(2)	C1*-Pt-Li*	66.4(2)		
Li-Pt-Li*	122.5(4)	N3-Li-N1	115.3(4)		
N3-Li-N2	78.3(3)	N1-Li-N2	80.6(3)		
N3-Li-Pt	106.1(3)	N1-Li-Pt	130.9(4)		
N2-Li-Pt	134.7(4)	N3-Li-C1	107.2(3)		
N1-Li-C1	95.1(4)	N2-Li-C1	173.7(4)		
Pt-Li-C1	47.5(2)	N3-Li-C4*	148.6(4)		
N1-Li-C4*	96.1(3)	N2-Li-C4*	109.5(3)		
Pt-Li-C4*	46.3(2)	C1-Li-C4*	67.5(2)		
C2-C1-Pt	107.6(3)	C2-C1-Li	145.4(4)		
Pt-C1-Li	66.1(2)	C3-C2-C1	108.8(4)		
C2-C3-C4	108.6(4)	C3-C4-Pt	109.7(3)		
C3-C4-Li*	166.7(4)	Pt-C4-Li*	63.8(2)		
C5-N1-C6	109.7(7)	C5-N1-C7	110.0(8)		
C6-N1-C7	111.5(7)	C5-N1-Li	114.1(7)		
C6-N1-Li	108.6(5)	C7-N1-Li	102.7(5)		
C8-N2-C9	109.5(5)	C8-N2-C10	110.9(5)		
C9-N2-C10	108.9(7)	C8-N2-Li	103.9(4)		
C9-N2-Li	116.3(4)	C10-N2-Li	107.3(5)		
C13-N3-C12	107.8(6)	C13-N3-C11	110.8(6)		
C12-N3-C11	109.4(5)	C13-N3-Li	102.7(4)		
C12-N3-Li	116.2(5)	C11-N3-Li	109.7(4)		
N1-C7-C8	114.0(6)	N2-C8-C7	112.4(5)		
C11-C10-N2	110.3(11)	N3-C11-C10	114.5(6)		

TABELLE 3. Ausgewühlte Bindungslängen (Å) und -winkel (°) von 2

räumliche Anordnung der an das Pt(II) gebundenen Kohlenstoffatome C1, C4, C1* und C4* weicht stark von der zu erwartenden quadratisch-planaren Geometrie ab. Der Diederwinkel, der von den Ebenen C1– Pt-C4 bzw. C1*-Pt-C4* aufgespannt wird, beträgt 61.3° , *d.h.* es liegt eine starke Verzerrung in Richtung tetraedrischer Symmetrie vor. Hinzu kommt ein Abknicken der Linie, die den Schwerpunkt der Atome C1-C4, das Platinatom und den Schwerpunkt der Atome C1*-C4* verbindet, aus der bei planarer oder tetraedrischer Anordnung der an das Zentralatom gebundenen Donatoratome notwendigen Linearität um 49.8°. Die Pt-C-Abstände sind im Gegensatz zu denen im [Li(TMEDA)]₂Pt-(CH₂CH₂CH₂CH₂)₂ (3) (Pt-C1: 2.114(4) Å, Pt-C4: 2.141(4) Å) [3] gleich lang. Der Abstand beträgt 2.120(4) Å. Die Abstände Li-C1 (2.64(1) Å) und Li-C4 (2.75(1) Å) sind wesentlich größer als in 3 mit Li-C-Abständen von 2.302(8) Å bzw. 2.455(8) Å oder im [LiCH₃]₄ mit 2.28 Å [6]. Der Abstand zwischen den Li-Atomen und Pt beträgt 2.628(7) Å, Diese Distanz ist größer als die in 3 mit 2.453(7) Å und auch größer als die Summe der Kovalenzradien Li-Pt mit 2.53 Å [7]. Dieser Befund weist darauf hin, daß in 2 eine geringere heterometallische Wechselwirkung vorliegt als in 3.

Im Gegensatz zur linearen Li-Pt-Li-Einheit im $[Li(TMEDA)]_2Pt-(CH_2CH_2CH_2CH_2)_2$ beträgt der Li-Pt-Li-Winkel in 2 122.5(4)°. Den Lithiumatomen ist infolge des größeren Li-Pt-Abstandes in 2 (im Vergleich zu 3) somit eher die Koordinationszahl fünf als sechs zuzuordnen.

Die stark verzerrte Struktur von 2 schreiben wir vorwiegend dem großen sterischen Einfluß des am Lithium koordinierten PMDETA zu. Auf ihn sind sicher auch die Schwächung der Li-C-Wechselwirkung und die sehr wahrscheinlich vorliegenden sterischen Spannungen im PMDETA-Komplex zurückzuführen, die wiederum die Ursachen für die deutlich niedrigere Zersetzungstemperatur und das überraschende Ergebnis der Thermolysereaktion von 2 im Vergleich zu 3 sein dürften.

3. Experimenteller Teil

All Arbeiten erfolgten unter Argon als Schutzgas mit wasser- und sauerstofffreien Lösungsmitteln. Die NMR-Spektren wurden mit einem Spektrometer der Fa. Bruker, Typ AC200F (¹H-NMR: 200 MHz; ¹³C-NMR: 50 MHz; als innerer Standard diente das im C_6D_6 auftretende ¹H-NMR-Signal) aufgenommen. Für die gaschromatographischen Bestimmungen wurde der Gaschromatograph Chrompack CP9000 verwendet.

Für die DTA-Untersuchungen stand ein Eigenbaugerät zur Verfügung [2].

Die Röntgenstrukturanalyse erfolgte an einem farblosen, quaderförmigen Kristall auf einem Enraf-Nonius CAD4-Diffraktometer mit Mo-K α -Strahlung ($\lambda = 0.71069$ Å, Graphit-Monochromator) bei Raumtemperatur mittels Least-Squares-Verfeinerung der 2 θ -Werte von 25 Reflexen im Bereich von 34.0 $\leq 2\theta \leq 41.6^{\circ}$. Röntgenintensitäten bis zu $2\theta_{max} = 54^{\circ}$ wurden in $\omega - w\theta$ Abtastung gemessen. Die Intensitäten wurden einer Lorentz- und Polarisationskorrektur unterzogen. Eine empirische Absorptionskorrektur (ψ -Scan) wurde durchgeführt [8].

Die Struktur wurde mit. der Schweratommethode gelöst (SHELX-86 [9]), wodurch der größte Teil der Nichtwasserstoffatome gefunden wurde. Durch Differenzfouriersynthesen konnten die restlichen Nichtwasserstoffatome ermittelt werden. Das erhaltene vorläufige Strukturmodell wurde im Voll-Matrix-LSQ-Verfahren anisotrop verfeinert [10]. Die Wasserstoffatome wurden in geometrisch idealisierten Lagen (d(C-H) = 0.96 Å) berechnet und in die Verfeinerung mit einem gemeinsamen isotropen Temperaturfaktor von $U_{iso} = 0.06 \text{ Å}^2$ einbezogen. Die Struktur ist racemisch verzwillingt (BASF-Faktor 0.5 [10]). Der abschließende *R*-Wert konvergierte bei 0.027 ($R_w = 0.028$).

Weitere Einzelheiten zur Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57731, des Autors und des Zeitschriftenzitats angefordert werden.

3.1. Darstellung von $[Li(PMDETA)]_2 Pt - (CH_2CH_2 - CH_2CH_2)_2$ (2)

Zu 1.0 g (2.53 mmol) [Li₂(Et₂O)]Pt-(CH₂CH₂CH₂-CH₂)₂ (1) [3] in 30 ml Diethylether werden bei -20° C unter Rühren *ca.* 1.5 ml Pentamethyldiethylentriamin zugegeben. Nach Erwärmen auf Raumtemperatur wird noch eine Stunde weitergerührt. Danach kühlt man das Reaktionsgemisch langsam auf -78° C ab und sammelt das farblose Kristallisat auf einer Fritte. Die Trocknung erfolgt im Vakuum bei Raumtemperatur. Ausbeute: 1.52 g (= 90% d.Th.). Anal. Gef.: Li 2.0; pt 29.01; "C₄H₈" 15.5; PMDETA 50.0. C₂₆H₆₂Li₂N₆Pt (667.75 g mol⁻¹) ber.: Li 2.08; Pt 29.21; "C₄H₈" 16.78; PMDETA 51.9%.

3.2. Umkristallisation des $[Li(PMDETA)]_2Pt-(CH_2-CH_2CH_2CH_2)_2$

0.5 g (0.748 mmol) $[Li(PMDETA)]_2 Pt-(CH_2CH_2-CH_2CH_2)_2$ werden bei Raumtemperatur in 15 ml Tetrahydrofuran gelöst. Der Lösung wird noch *ca*. 1 ml Pentamethyldiethylentriamin zugesetzt. Die Kristallisation erfolgt bei - 30°C.

Dank

Wir danken der Buna AG und dem Fonds der Chemischen Industrie für finanzielle Unterstützung. Unser Dank gilt weiterhin Herrn Dr. Friedrich für die Aufnahme der NMR-Spektren, Herrn Dr. Ludwig für die DTA-Messungen und Herrn Dr. Poppitz für die gaschromatographischen Untersuchungen.

Literatur

- 1 H.-O. Fröhlich, R. Wyrwa und H. Görls, J. Organomet. Chem., 456 (1993) 7.
- 2 H.-O. Fröhlich, R. Wyrwa und H. Görls, J. Organomet. Chem., 441 (1992) 169.
- 3 H.-O. Fröhlich, R. Wyrwa und H. Görls, Angew. Chem., 105 (1993) 425.
- 4 G.W. Rice und R.S. Tobias, J. Am. Chem. Soc., 99 (1977) 2141.
- 5 G.M. Sheldrick, SHELXTL/PC, Siemens Analytical X-Ray Instruments, Inc., Madison WI, 1992.
- 6 E. Weiss und E.A.C. Lucken, J. Organomet. Chem., 2 (1964) 19.
- 7 Periodensyst. d. Elemente nach Fluck und Heumann, VCH Verlagsgesellschaft, Weinheim, 1989; J.E. Huheey, Anorg. Chem., Verlag Walter de Gruyter, Berlin, 1988.
- 8 MOLEN, An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands, 1990.
- 9 G.M. Sheldrick, SHELXS-86, Programm zur Lösung von Kristallstrukturen, Göttingen, 1980.
- 10 G.M. Sheldrick, SHELXL-93, Ein Programm zur Verfeinerung von Kristallstrukturen, Göttingen, 1993.